

Analytics. Automation. Better Biology.



CellAssist<sup>™</sup> Cell Culture Assistant





Alpaca™ Cell Culture System Better Data. Better Biology.™

#### Thomas Farb-Horch Takashi Kiyoizumi, M.D., Ph.D.

Big Data Analytics Tokyo October 24, 2018 Confidential

Thomas Farb-Horch Thrive Bioscience, Inc. 11 Audubon Road Wakefield, MA 01880 USA tom@thrivebio.com mobile: +1 978-201-9081

# **Thrive Speakers**

## **CEO & Co-Founder-- Thomas Forest Farb-Horch**

- Founder/Board Member of over 10 companies, including:
  - AI: HNC Software (neural networks/acquired by Fair Isaac & Oracle)
  - $\circ\,$  Devices: Saf-T-Med (safety syringes/acquired by BD)
  - Diagnostics: Exact Sciences (NASD: EXAS) (colon cancer screening)
- General Partner of Shanghai-based venture capital fund
- VP of Strategic Planning & CFO of Cytyc (acquired by Hologic)

## EVP of International -- Taka Kiyoizumi, M.D., Ph.D., MBA

- M.D. & Ph.D. (Keio School of Medicine); MBA (MIT)
- Entrepreneur and executive specializing in life sciences
- CEO & Founder of MediciNova (NASDAQ: MNOV)
- CEO of Tanabe Research Laboratories, USA, US affiliate of Mitsubishi Tanabe Pharma



*Company Mission:* Provide instruments & software tools for consistently growing healthy cells with accompanying data and analytics

**1952 - 2018** 



#### Cell culture is at the center of biomedical research

- 200,000 "dumb" incubators
- 80,000 labs

**2019 +** Thrive Instruments

**1952** 



Tuskegee Institute --HeLa cell line factory

Cell culture is conducted similarly to 65 years ago --with significant unsolved pain points



# **Q:** What is cell culture?

### A: Artificially re-creating cells' environments to grow cells in vitro.

"Non-Smart" Incubators with Doors



No Images or Data Recorded



Manual, Undocumented, External Processes



Limited process controls Contamination

 LACKS DATA & IMAGES
 Stressful Environmental Changes

 Lacks Documentation
 Lack of reproducibility

 Subjective decisions
 Difficult to Scale





# **Thrive Bioscience -- Key Points**



- ✓ Significant Unmet Needs Thrive has solved many of the difficult problems of imaging and analyzing unstained, live cells
- ✓ Family of Products at Varying Price Points --
  - $\circ~$  Family of instruments using common modules
  - Currently in beta test of first product (CellAssist)
  - $\,\circ\,$  Revenues of \$100+ million projected in 2023 with significant recurring revenues
- ✓ Significant Patent Portfolio -- 42 applications of which 7 have issued
- ✓ Extensive Collaborations -- The Broad Institute of MIT & Harvard and Harvard Stem Cell Institute
- ✓ **Financing** -- Raised \$18.2 million to-date



**Q: Why Need Thrive?** A: There Are Major Problems in Research!



# **Pre-clinical Research is Not Reproducible**

- Pre-clinical research is the basis of clinical research (testing in humans)
- Studies from Amgen, Bayer, NIH and others -- 51% to 89% of pre-clinical research not reproducible!)



(About half of causes of irreproducibility in pre-clinical research relate to cell culture, directly and indirectly)







Majority of Pre-Clinical Research is Not Reproducible **The Reproducibility Crisis is Becoming Increasingly Recognized** 



*NATURE* | NEWS FEATURE | 26 May 2016

# "1,500 scientists lift the lid on reproducibility --Survey sheds light on the 'crisis' rocking research"

"More than 70% of the [surveyed] researchers have tried and failed to reproduce another scientist's experiments..."

When asked if there is a Reproducibility Crisis, 52% said: **"Yes, a significant crisis"** 

AND YET --

Differing results have NOT been resolved in 2/3rds of the cases



Majority of Pre-Clinical Research is Not Reproducible Reproducibly is a Necessity in Science



"The reproducibility of published experiments is the foundation of science. No reproducibility -- no science."

-- Moshe Pritsker, Ph.D., CEO, Journal of Visualized Experiments



# Inability to reproduce results slows down progress on cures and puts patients at risk:

- Undermines our cumulative knowledge / future research is based on past research
- 125,000+ patients in clinical trials based on nonreproducible research from 2000 to 2017 in U.S.



#### Cell Culture is Not Reproducible Current Cell Culture Leads to Inconsistent Results

• **Biology Lacks Data --** When an experiment does not work we currently often do not know why

## • Lack of Control of Process Controls

- Genomic drift from cell stress -the cells that survive differ from starting cells
- Mislabeling & contamination --14% to 36% of cell lines!
- Cells vary across / within labs and over time



Inconsistent Results

• Cells are increasingly distant from the "disease model" -- patients!

Better Data. Better Biology.





# **Cell Biology Databases are Inadequate:**

- Lack of an instrument for rapid imaging and capturing processes and protocols -- Thrive is providing the next generation microscope
- Biology requires significant amount of contextual data, which is difficult to capture -- Thrive captures contextual data from multiple streams (video, sensors, microscopy, 3D microscopy)

**Company Mission:** 

Provide instruments & software tools for consistently growing healthy cells with accompanying data & analytics.



## Thrive's Cell Culture Systems -- CellAssist & Alpaca

Thrive's systems use common image processing, analytics, optics & sensors

#### **CellAssist Cell Culture Assistant:**

- Bench-top solution improves existing, manual cell culture
- Reduces errors from human judgment with image processing & analytics



- Stand-alone solution replaces & automates cell culture
- *Reduces errors from human judgment* <u>and</u> implementation with robotics





Good Science Needs Good Cells.™



#### The CellAssist Solution: "Cell Metrics in a Box"

•Acquires data & images
•Analytics to improve research
•Documentation of processes



**Confluence Analytics Across Plates & Time:** 



Capture of 1,000's of Images:



#### **CellAssist Features:**

- •Scans Plates in <1 minute
- Cell Metrics Recording
- •AI & Intelligent Image Analysis
- Trend Analysis/Forecasting
- Documentation & Reporting

#### **Data and Images Collected:**

- Live/dead cell counts & pH
- Cell morphology features
- Characterization of stem cells
- 4x, 10x, 20x objectives <sup>8</sup>
- 6-well & 96-well plates





## **Cell Culture Case Studies**



### Cell Culture Case Study #1 --Cells Shaken, Not Stirred?





"A martini. Shaken, not stirred." - James Bond, Goldfinger, 1964

# **The Sequel:**

## Q: Do you like your cells shaken or stirred?

# "A set of data that was supposed to be completed in a few months took two years to understand and sort out."

from **Sorting Out the FACS: A Devil in the Details** by William C. Hines, Ying Su, et al **Cell Reports,** March 13, 2014



#### *Cell Culture Case Study #1:*

Lawrence Berkeley National Laboratory and Dana-Farber Cancer Institute

- "The reproduction of results is the cornerstone of science..."
- "Despite using seemingly identical methods, reagents and specimens, our two laboratories... were unable to replicate each other's... [cell] profiles."
- "The two first coauthors met in Berkeley to work side by side..."

"In the Boston method, tissue was being stirred in a flask... In the Berkeley method, tissues were digested while rocking... resulting in a dramatic effect on CD44 antigen presentation."

Cells Expressing CD44 Antigens:







Source: Sorting Out the FACS: A Devil in the Details; by William C. Hines, Ying Su, et al; Published: Cell Reports, March 13, 2014

#### Cell Culture Case Study #2: How Therapeutics Really effect Cells

## Drug Resistance Studies via Cell Counting (Current Practice)

- Drug resistance causes cancer patients to relapse
- Researchers widely study cancer drug resistance using cell culture
- Cancer cell growth is assessed by counting cells over 8 to 15 weeks
  - Lack of precision
  - Time consuming
  - Requires training



## More information is required for meaningful conclusions!





# CellAssist provides more and better data and earlier results from the same experiment!



THRIVE BIOSCIENCI alytics. Automation. Better Bio 17

#### Cell Culture Case Study #3: The Importance of Confluence & Passaging Cells

- **Confluence** is the percentage of the surface of a culture dish that is covered by cells.
- Confluence is used to judge when to passage (reseed or split) cell culture plates
  - Passaging is the transference of cells from to fresh growth medium
  - When to passage is one of the most important decisions in cell culture
  - Major determinant if the cell line will live and be healthy



- Confluence can also be used for determining cell health and and as a measure of consistency and quality
- Human estimates are very unreliable.





#### Cell Culture Case Study #3: Human Estimates of Confluence Fall Short on Accuracy

# Human estimates show a wide spread of values, often materially different from automated calculation:



- Thrive generated data from 2017 ISSCR 2017 conference attendees (N=76 participants) on their confluence estimates for
- 8 unique images of which 3 duplicated but rotated 180 degrees.



#### Cell Culture Case Study #3: Thrive's Confluence Advanced Data Reporting

- CellAssist records confluence data & tracks according to cell line.
- This enables the cell culturist to compare how their cells grow compared to past observations and identify anomalous growth.









#### Cell Culture Case Study #4: CellAssist -- Solving Problems in Directed Differentiation

**Humans using phase-contrast microscopy cannot easily distinguish** the quality of iPSC's by their appearance and resolve undesirable vs desirable differentiation.

**End-point validations are costly and limited** in providing into measuring the quality of the iPSC's, plus, they kill the cells.

**Process & cell status information is lost** due to a combination of the lack of vendor solutions, cost (time and equipment), and complexity (image processing).

**Quality is determined later in the process than is ideal**, even though there is value to researchers and to patients in determining the outcome at the earliest point in time, rather than reactively.

**Simply growing iPSCs over and over does not inform us sufficiently** on leading indicators of downstream quality.

#### **CellAssist Addresses the Problems:**

⇒

The CellAssist, combines routine full-well 4X imaging for growth and spread measurements with 10X sampled imaging for morphological characterization to provide interpretable image data.



#### Cell Culture Case Study #4: Directed Differentiation on CellAssist: Thrive's Time Series Analysis of Differentiation

Tracking cells in a fixed location over time – including over multiple media changes – allows identification of differentiating cells



© 2018 Thrive Bioscience, Inc.

THRIVE BIOSCIENCE alytics. Automation. Better Bio 22

# **Cell Culture -- An Important, Ignored Problem**

Example Statements from 1,000 Labs Market Research Conducted by Thrive

- "We have a complete lack of tools to help us in this increasingly important task of cell culture."
  - -- University Principal Investigator
- " Cell culture may be the only remaining island of outdated manual processes surrounded by an ocean of automation."
  - -- Research Institute Lab Director



# Analytics. Automation. Better Biology.

Thrive Bioscience, Inc.11 Audubon RoadWakefield, MA 01880USAtom@thrivebio.commobile: +1 978-201-9081