

PRACTICAL MACHINE LEARNING PIPELINE USING STREAMING IOT SENSOR DATA

Mathieu Dumoulin - MapR, Mateusz Dymczyk - H2O.ai

February 7, 2017 @ Tokyo Big Data Analytics 2017

## Mathieu Dumoulin and Mateusz Dymczyk

- Data Engineer @ MapR **Technologies**
- Previously data scientist and DS team manager, search, NLP and ML engineer







- Software Engineer @ H2O.ai
- Previously ML/NLP @ Fujitsu Laboratories and en-japan inc
- Sommelier in training







## The Time for IoT is NOW



## IoT and Industry 4.0: Predictive Maintenance







#### Problem Statement and Business Value

Situation: 生産能力を2倍以上にすることがゴール

We want a **real-time** view to allow factory staff to **see** which robots will *probably* fail, before they actually fail.

#### More Requirements:

- Deal with variety of robots (age, maker, function)
- Scale to [100-10,000] robots in real-time and multiple factories
- Ensure data reliability
- Factory staff has low level of IT knowledge

# Demo Pipeline **HMD Controller** H2O.a **REST API** GET ML Data Analysis **REST API POST** Raspberry Pi 3





#### LP-RESEARCH Motion Sensor

- Tokyo-based startup
- Hardware R&D for Industry 4.0 applications
- Founded by Waseda University Ph.D. grads
- www.lp-research.com













# Our Demo – Real Time Robot Failure Prediction... with AR Visualization

#### How we Made our Demo

- 1. Machine learning modeling
- 2. Data input
  - 1. Sensor to backend analysis
- 3. Backend data analysis
  - 1. MapR Converged Data Platform
  - 2. Streaming Architecture, MapR Streams (Apache Kafka)
- 4. Data output: visualizing predictions
  - 1. Augmented Reality Headset



## Machine Learning Modeling

- 1. Set the Machine Learning goal
  - 1. Detect abnormal events > 90% accuracy
  - 2. Avoid false positives
  - 3. Decide output
- 2. How to reach the goal
  - 1. Supervised vs. unsupervised
  - 2. Choose algorithm
  - 3. Initial dataset exploration
  - 4. Data cleaning and feature extraction
  - 5. Deal with real-time and large scale
- 3. Deploy to production
  - 1. Use MapR CDP and custom software
  - 2. H2O's export to POJO function





# ML – Looking at the data

| Sensor | TimeStamp | FrameNum | AccX | AccY | AccZ | GyroX   | GyroY   | GyroZ   | MagX | MagY | MagZ | EulerX | EulerY | EulerZ | Quat |       |       |       |             |             |             | Pressure | Altitude | Temp   | HeaveM    |
|--------|-----------|----------|------|------|------|---------|---------|---------|------|------|------|--------|--------|--------|------|-------|-------|-------|-------------|-------------|-------------|----------|----------|--------|-----------|
| Id     | (s)       | ber      | (g)  | (g)  | (g)  | (deg/s) | (deg/s) | (deg/s) | (uT) | (uT) | (uT) | (deg)  | (deg)  | (deg)  | W    | QuatX | QuatY | QuatZ | LinAccX (g) | LinAccY (g) | LinAccZ (g) | (kPa)    | (m)      | (degC) | otion (m) |
| 1      | 0         | 0        | 0    | 0    | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | -0.0103     | 0.0137      | 0.0143      | 0        | 0        | 0      | 0         |
| 1      | 0.01      | 1        | 0    | 0    | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0003      | -0.0002     | 0.0188      | 0        | 0        | 0      | 0         |
| 1      | 0.02      | 2        | 0    | 0    | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0023      | 0.0031      | 0.0227      | 0        | 0        | 0      | 0         |
| 1      | 0.03      | 3        | 0    | 0    | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0015      | 0.0111      | 0.0182      | 0        | 0        | 0      | 0         |
| 1      | 0.04      | 4        | 0    | 0    | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0048      | 0.0228      | 0.0042      | 0        | 0        | 0      | 0         |
| 1      | 0.05      | 5        | 0    | ) (  | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.006       | 0.0311      | -0.0008     | 0        | 0        | 0      | 0         |
| 1      | 0.06      | 6        | 0    | ) (  | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.013       | 0.0205      | -0.0205     | 0        | 0        | 0      | 0         |
| 1      | 0.07      | 7        | 0    | ) (  | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0191      | 0.0067      | -0.0486     | 0        | 0        | 0      | 0         |
| 1      | 0.08      | 8        | 0    | ) (  | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0206      | 0.0022      | -0.0653     | 0        | 0        | 0      | 0         |
| 1      | 0.09      | 9        | 0    | ) (  | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0156      | 0.002       | -0.0761     | 0        | 0        | 0      | 0         |
| 1      | 0.1       | 10       | 0    | ) (  | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0126      | -0.0163     | -0.083      | 0        | 0        | 0      | 0         |
| 1      | 0.11      | 11       | 0    | ) (  | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0144      | -0.0327     | -0.0807     | 0        | 0        | 0      | 0         |
| 1      | 0.12      | 12       | 0    | ) (  | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0135      | -0.0411     | -0.0815     | 0        | 0        | 0      | 0         |
| 1      | 0.13      | 13       | 0    | ) (  | 0    | 0       | 0       | 0       | 0    | 0    | 0    | 0      | 0      | 0      | 1    | 0     | 0     | 0     | 0.0106      | -0.0437     | -0.0734     | 0        | 0        | 0      | 0         |
|        |           |          |      |      |      |         |         |         |      |      |      |        |        |        |      |       |       |       |             |             |             |          |          |        | 1         |



▼ LinAccX (g)

## ML – Anomaly Detection







- Unsupervised: 教師なし学習
- Anomaly detection: 異常認識
- H2O uses autoencoder algorithm (deep learning)
- H2O's R API for modeling
  - Very productive API
  - Good graphs
- Parameter tuning of models
- See H2O's training-book on **GitHub**

### ML – Results





Note: Time window: 200ms, Threshold: 1SD (標準偏差)

## ML – Deploy to Production – Real-time Data



#### **MapR Converged Data Platform**





Data Output – Making Predictions



Data Output – Making Predictions



#### Conclusion

- Getting a good enough model on some data was less than 10% of the total work.
- Team members need to have ALL expertise for this kind of project. Hardware, software, big data, ML.
- MapR, H2O and LP-RESEARCH's sensor were all essential parts of the project success.
  - The MapR platform worked perfectly, H2O model is high quality and fast.
- The hardware expertise of LP-RESEARCH was critical



PROJECT GITHUB: github.com/mdymczyk/iot-pipeline

Mathieu Dumoulin, mdumoulin@mapr.com @Lordxar

Blog: <a href="https://www.mapr.com/blog/author/mathieu-dumoulin">https://www.mapr.com/blog/author/mathieu-dumoulin</a>

Mateusz Dymczyk, H2O.ai, mateusz@h2o.ai @mdymczyk

Klaus Petersen, klaus@lp-research.com

LP-RESEARCH: <u>www.lp-research.com</u>

MAPR.

# Thank you to LP-RESEARCH!











LPMS-CU<sub>2</sub>



LPMS-CANAL2



LPMS-USBAL2



OEM also available!

See all our products: https://www.lp-research.com/products/